Group Sparsity and Graph Regularized Semi-Nonnegative Matrix Factorization with Discriminability for Data Representation
نویسندگان
چکیده
Abstract: Semi-Nonnegative Matrix Factorization (Semi-NMF), as a variant of NMF, inherits the merit of parts-based representation of NMF and possesses the ability to process mixed sign data, which has attracted extensive attention. However, standard Semi-NMF still suffers from the following limitations. First of all, Semi-NMF fits data in a Euclidean space, which ignores the geometrical structure in the data. What’s more, Semi-NMF does not incorporate the discriminative information in the learned subspace. Last but not least, the learned basis in Semi-NMF is unnecessarily part based because there are no explicit constraints to ensure that the representation is part based. To settle these issues, in this paper, we propose a novel Semi-NMF algorithm, called Group sparsity and Graph regularized Semi-Nonnegative Matrix Factorization with Discriminability (GGSemi-NMFD) to overcome the aforementioned problems. GGSemi-NMFD adds the graph regularization term in Semi-NMF, which can well preserve the local geometrical information of the data space. To obtain the discriminative information, approximation orthogonal constraints are added in the learned subspace. In addition, `21 norm constraints are adopted for the basis matrix, which can encourage the basis matrix to be row sparse. Experimental results in six datasets demonstrate the effectiveness of the proposed algorithms.
منابع مشابه
`2,1 Norm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability for Data Representation
Matrix factorization based methods have widely been used in data representation. Among them, Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and physiological interpretation of spontaneously occurring data. On one hand, although traditional Laplacian regularization can enhance the performance of NMF, it still suffers from the problem of its weak extra...
متن کاملNorm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability for Data Representation
Matrix factorization based methods have widely been used in data representation. Among them, Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and physiological interpretation of spontaneously occurring data. On one hand, although traditional Laplacian regularization can enhance the performance of NMF, it still suffers from the problem of its weak extra...
متن کاملGroup Sparsity in Nonnegative Matrix Factorization
A recent challenge in data analysis for science and engineering is that data are often represented in a structured way. In particular, many data mining tasks have to deal with group-structured prior information, where features or data items are organized into groups. In this paper, we develop group sparsity regularization methods for nonnegative matrix factorization (NMF). NMF is an effective d...
متن کاملLearning manifold to regularize nonnegative matrix factorization
In this chapter we discuss how to learn an optimal manifold presentation to regularize nonegative matrix factorization (NMF) for data representation problems. NMF, which tries to represent a nonnegative data matrix as a product of two low rank nonnegative matrices, has been a popular method for data representation due to its ability to explore the latent part-based structure of data. Recent stu...
متن کاملMultiplicative nonnegative graph embedding
In this paper, we study the problem of nonnegative graph embedding, originally investigated in [14] for reaping the benefits from both nonnegative data factorization and the specific purpose characterized by the intrinsic and penalty graphs [13]. Our contributions are two-fold. On the one hand, we present a multiplicative iterative procedure for nonnegative graph embedding, which significantly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017